miércoles, 28 de marzo de 2012

Codigo Genetico






 

El código genético es un conjunto de normas por las que la información codificada en el material genético (secuencias de ADN o ARN) se traduce en proteínas (secuencias de aminoácidos) en las células vivas. El código define la relación entre secuencias de tres nucleótidos, llamadas codones, y aminoácidos. Un codón se corresponde con un aminoácido específico. El ARN se basa en transportar un mensaje del ADN a la molécula correspondiente
La secuencia del material genético se compone de cuatro bases nitrogenadas distintas, que tienen una función equivalente a letras en el código genético:adenina (A), timina (T), guanina (G) y citosina (C) en el ADN y adenina (A), uracilo (U), guanina (G) y citosina (C) en el ARN.




Debido a esto, el número de codones posibles es 64, de los cuales 61 codifican aminoácidos (siendo además uno de ellos el codón de inicio, AUG) y los tres restantes son sitios de parada (UAA, llamado ocre; UAG, llamado ámbar; UGA, llamado ópalo). La secuencia de codones determina la secuencia aminoacídica de una proteína en concreto, que tendrá una estructura y una función específicas.







CARACTERÍSTICAS DEL CÓDIGO GENÉTICO
Las características del código genético fueron establecidas experimentalmente por Fancis CrickSydney Brenner y colaboradores en 1961. Las principales características del código genético son las siguientes:
DESCIFRAMIENTO DEL CÓDIGO GENÉTICO
La asignación de un aminoácido a cada triplete o el desciframiento de la clave genética, se llevó a cabo fundamentalmente gracias al esfuerzo de tres grupos de investigación, el grupo de M. W. Nirenberg, el grupo de S. Ochoa y el equipo de H. G. Khorana. Parece lógico pensar que el desciframiento del código genético se debería haber realizado comparando las secuencia de nucleótidos de un gen y la de aminoácidos del polipéptido codificado por dicho gen. Sin embargo, en la época en la que se realizaron estos trabajos no era posible todavía obtener la secuencia de los ácidos nucleicos.
Severo Ochoa
Marshall W. Nirenberg
Har Gobind Khorana
La mayoría de los trabajos realizados por estos tres grupos de investigación consistieron en sintetizar ARN mensajeros (ARN-m) para utilizarlos posteriormente como mensajeros artificiales en un sistema acelular de traducción "in vitro". Estos sistemas acelulares de traducción "in vitro" procedían de la bacteria E. coli y contenían todo lo necesario para llevar a cabo la traducción: ribosomas, todos los ARN transferentesaminoácidos, enzimas, etc. Sin embargo, a estos sistemas acelulares se les quitaban los ARN mensajeros de E. coli y se les añadía un ARN sintetizado artificialmente. En estos sistemas acelulares se sintetizaba un polipéptido.
Posteriormente, se comparaba la secuencia del ARN -m sintético utilizado en el experimento con la secuencia de aminoácidos del polipéptido producido.
La puesta a punto de estas técnicas requería poder sintetizar ARN-m de forma enzimática (grupo de Ochoa) o de  forma química (grupo de Khorana) y conseguir un sistema acelular estable para sintetizar proteínas (grupo de Nirenberg).
En esencia, los grupos de investigación anteriormente mencionados realizaron los siguientes tipos de esperimentos:
  • Utilización de homopolimeros 
  • uso de copolimeros
  • Empleo de polímeros de secuencia conocida 
  • Técnica de incorporación de ARN trasferente 

EL CÓDIGO GENÉTICO ES UNIVERSAL
El desciframiento del código genético se ha realizado fundamentalmente en la bacteria E. coli, por tanto, cabe preguntarse si el código genético de esta bacteria es igual que el de otros organismos tanto procarióticos como eucarióticos. Los experimentos realizados hasta la fecha indican que el código genético nuclear es universal, de manera que un determinado triplete o codón lleva información para el mismo aminoácido en diferentes especies. Hoy día existen muchos experimentos que demuestran la universalidad del código nuclear, algunos de estos experimentos son:
    • Utilización de ARN mensajeros en diferentes sistemas acelulares. Por ejemplo ARN mensajero y ribosomas de reticulocitos de conejo con ARN transferentes de E. coli. En este sistema se sintetiza un polipéptido igual o muy semejante a la hemoglobina de conejo.
    • Las técnicas de ingeniería genética que permiten introducir ADN de un organismo en otro de manera que el organismo receptor sintetiza las proteínas del organismo donante del ADN. Por ejemplo, la síntesis de proteínas humanas en la bacteria E. coli.
El desciframiento del código genético dio como resultado la siguiente asignación de aminoácidos a los 64 tripletes.






CONCLUSIONES:
La realización de este trabajo nos ha permitido tener una visión más clara y completa de cómo se lleva a cabo la síntesis de proteínas en los seres vivos, además de enseñarnos la importancia que tienen cada uno de los pasos insignificantes que puedan parecernos, ya que por ejemplo, el cambio de un aminoácido por otro en la síntesis de una determinada proteína podría ocasionar que la proteína resultante no realice su trabajo con eficacia o que, simplemente, no la realice. Por otro lado podemos considerar los fallos en la copia o duplicación del ADN durante la meiosis como uno de los pilares de la evolución, por lo que no podemos decir que un cambio en una proteína pueda producir siempre un defecto en alguna de sus funciones, no obstante es lo más común.



No hay comentarios:

Publicar un comentario